Technical description of GLYDE-II

Supplemental Information - GLYDE-II

The most up-to-date version of this document can be found at http://glycomics.crc.cu.edu/GLYDE-II/GLYDE-description.pdf

1. Overview.

GLYDE is a standard for the representation of the chemical structures of complex glycans that is based on a connection table formalism using XML syntax. The GLYDE standard can be divided into two conceptually distinct parts, syntax and implementation. The syntax of a GLYDE document is fully defined by its schema (either a DTD or XML schema, Section 2), which provides a framework we call PARCHMENT (PARtonomy of CHEMical ENTities). PARCHMENT allows the complete structure of biological molecules (including complex glycans) to be completely and unambiguously specified at several levels of granularity. That is, PARCHMENT is a modular approach to specify molecular structure in terms of the parts that make up the whole. It provides a very general, machine-readable format (XML) for their representation. The implementation of the GLYDE standard also includes a set of rules, naming conventions for the parts, and enumeration of chemical entities that are acceptable parts at various levels of granularity. These implementation rules are absolutely required for representational consistency and disambiguation. However, purely syntactic enforcement of these rules (e.g., solely by the GLYDE schema) would be very difficult and would probably result in an unstable standard. This document describes the XML syntax and implementation rules for GLYDE.

1.1. Partonomy and Granularity. The fundamental relationship between objects in the GLYDE formalism is partonomy (also known as mereology (Casati and Varzi 1999). That is, larger structures are defined by their parts. For example, a molecule is a complex entity that consists of parts that are connected to each other. A part can be a moiety (such as a glycan moiety), a residue (such as a glycosyl residue or an amino acid residue) or a bound_atom (such as a carbon atom that is covalently linked to another atom). Two parts of a molecule can be connected by a link. It is important to emphasize that one molecule cannot be connected to another molecule by a link. Thus, a molecule is an independent entity, unlike its parts, which are linked together. Another independent entity is a free_atom, which is an atom that is not bound to any other atom. The third independent entity is an aggregate, which is itself composed of independent entities (molecules, free_atoms, and/or other aggregates), which are not linked to each other.

An atom (either a free_atom or a bound_atom), which is not composed of smaller parts in the GLYDE formalism, is defined in the common chemical sense and includes entities such as “Oxygen_atom” and “Carbon_atom”. Larger structures are built up from smaller parts in a hierarchical manner, using independent entities (molecule or free_atom) as
archetypes to specify the parts of larger entities. For example, a free atom ("C", "H", "N", "O", etc.) can be referenced (used as an archetype) to specify a bound atom within a molecule, such as a monosaccharide. This monosaccharide, in turn, can be referenced (used as an archetype) to specify a glycosyl residue that is a part of a glycan molecule. This glycan molecule, in turn, can be referenced (used as an archetype) to specify a glycosyl moiety that is part of a glycoconjugate molecule.

At a coarser granularity, a molecule, which by definition is not covalently attached to any other entity, can be referenced to specify the structure of a molecule instance that is one of the parts of an aggregate. For example, the monomeric form of avidin is a glycoprotein molecule, while the native form of avidin is an aggregate composed of four avidin molecule instance objects, each specified by reference to a single avidin molecule object. The atomic components of an aggregate object are specified as free atom instance objects and the aggregate components of larger, inclusive aggregate objects are specified as aggregate instance objects. Thus, the “instance” objects that comprise a properly constructed aggregate are defined indirectly (by reference). Such “instance” objects have additional optional attributes - Cartesian coords and euler angles, which specify the location and orientation of the instance within the aggregate. (See Section 4.) This approach facilitates the description (including geometry) of complex aggregate structures that contain more than one copy of each component.

In common biochemical language, a residue is often defined as a structural subunit of a biological molecule that is released by a hydrolytic chemical reaction. Thus, a GLYDE residue may correspond to a glycosyl residue (such as β-D-Glc p or α-L-Fuc p), an amino acid residue (such as l-Gly or l-Asn) or a lipid residue (such as oleic acid). A GLYDE moiety, such as a glycosyl moiety or peptide moiety within a glycopeptide, is specified by reference to a molecule that is composed of at least one residue. It is important to note that the moiety objects that comprise a glycopeptide are not themselves molecule objects, otherwise linking them to each other would violate GLYDE-II syntax. Rather, each moiety is a distinct instance that is defined by reference to a glycan or peptide molecule.

The GLYDE hierarchy thus allows structures to be represented at several different levels of granularity. For example, a software application may only require information specifying that the molecule of interest contains carbohydrate moiety X and peptide moiety Y, and may not depend on the molecular details of these structures. In this case, a very coarse granularity will suffice, and it will not be necessary to parse the GLYDE representation to the atomic level. A fully atomistic representation that does not provide for abstraction of larger substructures would not be appropriate for such a case, as this would require the larger substructures (e.g., moieties) to be identified and abstracted by the software application itself.

2. The GLYDE syntax - DTD.

The syntactic aspects of structure representation in GLYDE are defined by the Document Type Definition (DTD - http://www.w3.org/TR/xml/#sec-prolog-dtd). The DTD defines XML elements (http://www.w3.org/TR/xml/#elemdecls) that make up the GLYDE file. For example, the DTD specifies that a GLYDE document contains XML elements called
Technical description of GLYDE-II

molecule and residue. Each XML element can have several attributes (http://www.w3.org/TR/xml/#attdecls). The most recent version of the DTD file for GLYDE-II can be found at http://glycomics.cerc.uga.edu/GLYDE-II/GLYDE-II.DTD. GLYDE is also supported using an XML schema (http://www.w3.org/XML/Schema).

While, the major features of the DTD are documented internally, additional notes are included below.

- The root element, called GlydeII, can contain elements called free_atom, molecule, and aggregate. Each of these is an independent object (not covalently linked to other objects).

- When a particular free_atom, molecule or aggregate is present more than once (or the location and orientation of the object is important), the objects are contained in an aggregate object and structurally specified as “instances” by reference to an archetypal object. An aggregate is simply a way to collect independent parts into a set and specify their relative positions and orientations. For example, a multimeric glycoprotein along with small ions such as Na⁺ would be specified as a GLYDE-II aggregate.

- The molecule element is composed of parts and links that connect them. The DTD enforces the restriction that a molecule must be made entirely of moieties, residues, or bound atoms, and these different types of parts cannot be mixed together. Furthermore, the links in the molecule must correspond to the parts. For example, a molecule composed of residues must only contain residue_link objects, which themselves can enclose atom_link objects. It is important to note that molecules always serve as archetypes for the polyatomic parts called moiety, residue and molecule_instance.

- The free_atom element has no parts, and must contain at least one uri element pointing to an external description of its structure.

- The moiety, residue, and bound_atom elements are building blocks from which molecules are constructed. Two moiety elements can only be connected by a moiety_link, which can wrap a residue_link that connects the two residues (one in each moiety) involved in the moiety_link. Similarly, the residue_link can wrap an atom_link that connects the two bound_atoms (one in each residue) that are involved in the residue_link. The DTD enforces syntax that help to maintain this hierarchy and assure that each link will be appropriate and symmetrical (i.e., moiety to moiety, residue to residue, or bound_atom to bound_atom).

- Instantiation of a part of a molecule (i.e., a moiety, residue, or bound_atom) involves the specification of a partid attribute, which is of type CDATA. A partid can thus be any text, and need not be unique within a GLYDE-II file. This makes it possible to reuse the same partid for different parts in the same GLYDE file. For example, two different monosaccharide molecules (say “b-D-Glcp” and “b-D-Galp”) in the same GLYDE file may both contain a bound_atom with a partid whose value is “C1”, so
Technical description of GLYDE-II

this value would not be unique within the GLYDE file. Thus, while distinct elements can have the same partid in a give GLYDE-II file, each direct child of a molecule must have a distinct partid, such that the partid attribute can be subsequently used as an unambiguous reference to each distinct part. For example, a b-D-Glcp molecule can have only one bound_atom with partid="C1". Thus, one can explicitly refer to “C1” of the b-D-Glcp molecule (e.g., using x-path) because it is identified as the part with partid="C1" that is found within the molecule having id="b-dglc-hex-1:5". (See section 3.2 for conventions for id attributes of carbohydrate residues.)

• A combination element is a collection of links that can be combined in different ways to generate several mutually exclusive chemical entities. The combination element is used when there is ambiguity regarding the location of a part or group of parts within a molecule, as described in Section 3.4.4.

3. Implementation rules for GLYDE structures.

The smallest possible structures are atoms (free_atoms or bound_atoms), as illustrated in the following example.

```xml
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE GlydeII SYSTEM "http://glycomics.crc.r.uga.edu/GLYDE-II/GLYDE-II-1.2.dtd">
<GlydeII>
  <atom name="Hydrogen_atom" id="H">
    <uri value="http://www.rsc.org/periodic-table/element/1/hydrogen"/>
    <uri value="http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:49637"/>
    <uri value="http://webbook.nist.gov/cgi/inchi/InChI%3D1S/H"/>
  </atom>
  <atom name="Carbon_atom" id="C">
    <uri value="http://www.rsc.org/periodic-table/element/6/carbon"/>
    <uri value="http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:27594"/>
    <uri value="http://webbook.nist.gov/cgi/cbook.cgi?ID=7440440"/>
  </atom>
  <atom name="Oxygen_atom" id="O">
    <uri value="http://www.rsc.org/periodic-table/element/8/oxygen"/>
    <uri value="http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:25805"/>
    <uri value="http://webbook.nist.gov/cgi/cbook.cgi?ID=17778802"/>
  </atom>
  <atom name="Nitrogen_atom" id="N">
    <uri value="http://www.rsc.org/periodic-table/element/7/nitrogen"/>
    <uri value="http://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:25555"/>
    <uri value="http://webbook.nist.gov/cgi/inchi/InChI%3D1S/N"/>
  </atom>
</GlydeII>
```

Note that the URL of the DTD for GLYDE is indicated in the <!DOCTYPE> tag. The physical properties of each atom described in this file can be found by reference to the uri objects.

3.1. Implementation rules for atomic structures and parts. Rules (outside the DTD specification) are defined to enforce vocabulary control for atomic structures and parts.

Rule 1: The values of the id attribute of free_atom elements in GLYDE are limited to the standard elemental or isotopic string representations, such as “H”, “C”, “13C”, etc.
Rule 2: Atomic ids cannot be assigned to non-atomic structures in a GLYDE document, as this could result in degeneracy of the id, which is not allowed.

Rule 3: The values of the partid attribute for bound_atom elements follow specific guidelines (described below). The reason for this rule is that it allows an application to generate GLYDE representations of a glycan without explicitly looking up the partids of the constituent atoms of each residue in order to assign an inter-residue link between two atoms. For example, a monosaccharide archetype for a residue is composed of bound_atoms, with partids “C1”, “O1”, etc. According to this rule, a “1-4” (O-glycosidic) linkage from an aldosyl residue and another monosaccharide residue is always specified by declaring: from = “C1” and to = “O4”.

The partids for bound_atoms in a carbohydrate residue (where type=”base_type”) are assigned using the numbering system sanctioned by the IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN), as described in “Symbols for Specifying the Conformation of Polysaccharide Chains” (http://www.chem.qmul.ac.uk/iupac/misc/psac.html#130). For example, “Atoms are thus designated C3, O2, H4, etc.” This IUPAC-IUB document also indicates that oxygens within a furanose or pyranose ring are named using a number rather than the letter “R”. Thus, the oxygen within the ring of Glcp is identified as “O5” rather than “OR”. Exchangeable hydrogens of hydroxyl groups are not explicitly named in GLYDE. However, the GLYDE standard differs from the IUPAC standard in that prochiral atoms are indicated using the R/S nomenclature (e.g., “H6R” and “H6S”), as this is practical when specifying the stereochemistry of a well-defined small molecule such as a monosaccharide.

The atomic partids for amino-acids are assigned using the numbering system sanctioned by the IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN), as described in “Nomenclature and Symbolism for Amino Acids and Peptides (3AA-2)” (http://www.chem.qmul.ac.uk/iupac/AminoAcid/AA1n2.html#AA22).

3.2. Implementation rules for monosaccharide molecules and residues. The scope and identities of monosaccharide molecules and corresponding monosaccharide residues are defined for GLYDE-II according to the Glyco-CT specification (Herget, Ranzinger et al. 2008). The following objects are defined:

base-type: a description of a stereo-chemically defined structure from the chemical class of polyhydroxyaldehydes or ketones, without any substituent. On this level, acidic functions, double bonds, deoxigenations, sp²-hybridisation, reductions of the anomeric carbon, and additional carbonyls (e.g., keto groups) are encoded. Thus, base-types are polyhydroxy structures composed entirely of C, H and O atoms. This includes many common simple sugars such as glucose, mannose, and fucose. Valid base-types that contain up to four stereo-centres are named using IUPAC nomenclature (IUPAC Nomenclature of carbohydrates, http://www.chem.qmul.ac.uk/iupac/2carb/02.html#0222) with a single configuration
Technical description of GLYDE-II

specifier. For example, “dgle” signifies the d-gluco configuration. Base-types with more than four stereo-centres also follow established IUPAC naming convention, which results in composite names, such as “dgro-dgal” for d-glycero-d-galacto base-types. Trivial names for such structures are deprecated. The anomeric configuration of the base-type is also specified.

Substituent: A non-base-type entity with linkage(s) to a base-type. A substituent is typically a small chemical entity, which is encoded in a list of substituents. The MonosaccharideDB (http://www.monosaccharideDB.org) manages this list.

Monosaccharide: Every distinct residue entity that is connected via a glycosidic linkage to another entity – typically a base-type with substitutions.

GLYDE residue objects are specified by reference to molecule objects. For example, glycosyl residues are specified by reference to the corresponding free monosaccharide molecule objects. Thus, the “b-D-Glcp” monosaccharide residue corresponds to a single base-type and is specified by reference to the “b-D-Glcp” molecule as its archetype. However, many traditionally defined monosaccharides can be composed of a base-type and substituents. As specified by GlycoCT, monosaccharides containing an N-acetyl group are represented by two GLYDE-II residues, a base-type and a substituent. For example, a “b-D-GlcpNac” monosaccharide consists of a “b-D-Glcp” residue (subtype=“base_type”) and an “n-acetyl” residue (subtype=“substituent”).

By convention, the residue_link is from the substituent to the base_type. In the GLYDE-II representation of b-D-GlcpNac (described above) the nitrogen of the n-acetyl substituent (the “from” residue) replaces O2 of the molecule (the monosaccharide b-D-Glcp) acting as the archetype for the b-D-Glcp base_type (the “to” residue), so the attribute from_replaces=“02” is used. See section 3.3 for more details.

Rule 4. In GLYDE, composite monosaccharide molecules that contain both a base-type residue and substituent residues can be defined by combining these residues. However, such composite monosaccharide molecules should never be referenced to specify a monosaccharide residue within the context of a larger molecule. That is, a composite monosaccharide residue must be explicitly defined by explicit reference to the molecules corresponding to its component parts.

Rule 5. The valid names for all monosaccharides (including composite monosaccharides consisting of both a base-type and substituents) are managed by the MonosaccharideDB (http://www.monosaccharideDB.org), which also manages the naming of base-types and substituents as well as the naming of atoms in these structures. MonosaccharideDB provides several services. For example, it allows a monosaccharide to be identified from its base-type and substituents, and provides alternate names (IUPAC, trivial) of the monosaccharide.

Implementation Note. To maintain vocabulary consistency, GLYDE representations of monosaccharide molecules that are used as archetypes for
carbohydrate residues will be dynamically generated by services provided by MonosaccharideDB. Thus, full specification of the ref attribute of a part will include the MonosaccharideDB URL and the Glyco-CT name of the part. For example,

ref="http://www.monosaccharideDB.org/GLYDE-II.jsp?G=a-dman-hex-1:5"

The GLYDE representation can be made more concise by using a DTD entity (http://www.w3.org/TR/xml/#sec-references) to define the URL of the service provided by MonosaccharideDB. For example, the GLYDE file could contain the following code:

```xml
<!DOCTYPE GlydeII SYSTEM "http://glycomics.ccrc.uga.edu/GLYDE-II/GLYDE-II-1.2.DTD "[
<!ENTITY mDBget "http://www.monosaccharideDB.org/GLYDE-II.jsp?G">]
```

Then, reference to a base-type or substituent in MonosaccharideDB can be succinctly made using the code like the following example:

ref="&mDBget;a-dman-hex-1:5"

Subsequent examples in this document will use this succinct representation. In the future, the entity specifying the URL of the MonosaccharideDB service used in this context will be included in the DTD or XML schema itself, to insure that MonosaccharideDB is used as the authority for defining residue partid attributes.

Currently, a subset of GLYDE-II conformant atomistic representations of base-types and substituents are available via MonosaccharideDB. This set will be expanded in the future.

3.3. Implementation rules for the direction of links

The GLYDE standard includes a partonomy of links. (See Section 1.1.) That is, a residue_link between two residues (e.g., specifying linkage of residues “A” and “B”) embodies an atom_link with finer granularity (e.g., specifying linkage of “C1” of residue “A” and “O4” of residue “B”). This is implemented using the from and to attributes of each link to specify an ordered pair. Thus, the object specified by the from attribute of a child link corresponds to a part of the object specified by the “from” attribute of the parent link. A similar relationship applies to the “to: attribute. In order to maintain consistency in the specification of structures, rules are required to constrain the ordering of this pair (i.e., which of two parts is specified by the from attribute and which is specified by the to attribute). In general, one should be able to trace at least one pathway between any part of the structure and its root without reversal of link direction. (However, it is recognized that one might find structures for which no set of specific rules can be specified that maintain this general rule.)
Technical description of GLYDE-II

Note that the rules specifying the direction of links do not apply to the order that parts are listed in the file, as GLYDE-II makes no effort to generate unique representations, where the text order is controlled.

Rule 6. Direction of *atom links*. The *atom links* between two atoms in a monosaccharide all point toward the attached carbon with the lowest number, (e.g., from C2 to C1, from O2 to C2, from O1 to C1, etc). The *atom links* between two atoms in an amino acid all point toward C1 (the carbonyl carbon that can take part in a peptide linkage). The *link* between an atom in one residue and an atom in another residue follow from **Rule 7**.

Rule 7. Direction of *residue links*. The *residue links* between glycosyl residues point toward the reducing end of a glycan. The *residue links* between amino acid residues point toward the carboxy terminus. The *residue links* between a monosaccharide residue and an amino acid (as in a glycopeptide) point toward the amino acid if the link is via a glycosidic bond and toward the glycosyl residue if the link is via an ester involving the carboxyl of the amino acid and a hydroxyl of the monosaccharide residue. That is, ester and amide *residue links* generally point from the acid-containing *residue* to the alcohol- or amine-containing *residue*, respectively. An exception is the link from the sugar to the peptide in an N-glycopeptide, where the link is from the sugar residue to the asparagine residue.

Rule 8. All links must connect two parts that are of the same granularity. The “from” and “to” attributes of the child link point to structures that have a granularity that is exactly one level finer than those in the parent link. That is, an *atom link* is always the child of a *residue link*, which is always the child of a *moiety link*. (In molecule objects such as monosaccharides that are directly composed of *bound atom* objects, the *atom link* has no parent. In molecule objects such as free glycans that are directly composed of *residue* objects, the *residue link* has no parent. Only when the *molecule* is used as an archetype for a *residue* or *moiety* are these links wrapped by links of higher granularity.)

These rules for GLYDE-II are illustrated in the following example, drawn using the CFG graphical nomenclature. The *part id* of each *residue* is labeled with a number. GlcNAc residues are composed of a *base type* residue and a *substituent* residue.
Technical description of GLYDE-II

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE GlydeII SYSTEM "http://glycomics.ccr.crc.uga.edu/GLYDE-II/GLYDE-II-1.2.DTD">
<ENTITY mDBget "http://www.monosaccharideDB.org/GLYDE-II.jsp?G"/>

<GlydeII>
 <molecule subtype="glycan" id="M3N2">
 <residue subtype="base_type" partid="1" ref="mDBget;b-dglc-HEX-1:5" />
 <residue subtype="substituent" partid="2" ref="mDBget;n-acetyl" />
 <residue subtype="base_type" partid="3" ref="mDBget;b-dglc-HEX-1:5" />
 <residue subtype="substituent" partid="4" ref="mDBget;n-acetyl" />
 <residue subtype="base_type" partid="5" ref="mDBget;b-dman-HEX-1:5" />
 <residue subtype="base_type" partid="6" ref="mDBget;a-dman-HEX-1:5" />
 <residue subtype="base_type" partid="7" ref="mDBget;a-dman-HEX-1:5" />
 <residue_link from="2" to="1">
 <atom_link from="N1" to="C2" from_replaces="O2" bond_order="1" />
 </residue_link>
 <residue_link from="3" to="1">
 <atom_link from="C1" to="O4" to_replaces="O1" bond_order="1" />
 </residue_link>
 <residue_link from="4" to="3">
 <atom_link from="N1" to="C2" from_replaces="O2" bond_order="1" />
 </residue_link>
 <residue_link from="5" to="3">
 <atom_link from="C1" to="O4" to_replaces="O1" bond_order="1" />
 </residue_link>
 <residue_link from="6" to="5">
 <atom_link from="C1" to="O6" to_replaces="O1" bond_order="1" />
 </residue_link>
 <residue_link from="7" to="5">
 <atom_link from="C1" to="O6" to_replaces="O1" bond_order="1" />
 </residue_link>
 </molecule>
</GlydeII>

Application Note. In this example, evaluation of the entity "mDBget;" represents the URL that points to a MonosaccharideDB, instructing it to dynamically generate the GLYDE-II representations of an archetypal molecule. However, it is possible that some molecules (e.g., oligosaccharides that are used as archetypes for the carbohydrate moieties of glycoconjugates) or free_atoms (that are used as archetypes for bound_atoms) will be found in static XML files. In other cases, the archetypal molecules or free_atoms may reside in the same XML file as the parts that reference them. In any case, a GLYDE parser must know where to look for the referenced molecule or free_atom within the GLYDE code. This is accomplished by dividing the string specified by the ref attribute into two substrings separated by a delimiter. For static representations “#” is used as the delimiter. For dynamically generated representations, “=” is used as the delimiter. The substring following the delimiter is the id attribute of the molecule or free_atom that is being references as an archetype for the part.
Technical description of GLYDE-II

In summary, if the structure is found in the same XML file as the part that references it, “#” is the first character in the string specified by the ref attribute of the part, as follows.

```xml
<moiety subtype="glycan" partid="moiety_1" ref="#M3N2"/>
```

If the structure is found in a different XML file, the “#” delimiter is used as follows.

```xml
<moiety subtype="glycan" partid="moiety_1"
    ref="http://glycomics.ccrc.uga.edu/GLYDE-II/lib/M3N2.xml#M3N2"/>
```

If the structure is found in a dynamically generated GLYDE-II representation, the “=” delimiter is used as follows (see Application Note paragraph, above).

```xml
<residue subtype="base_type" partid="3" ref="&mDBget;b-dglc-hex-1:5"/>
```

It is important to note that when the archetype molecule with id="b-dglc-hex-1:5", for example, is used as a part in a larger molecule, it is recast as a residue. That is, the original molecule is an independent entity, the monosaccharide “β-D-Glcp”. However, within the context of a larger molecule, this part is not independent (it is glycosidically linked), and therefore it is no longer an independent monosaccharide molecule, but a residue within a glycan molecule.

Each of the links in this pentaglycoside is specified at two levels of granularity. The coarsest level (a residue_link) just specifies that two residues are connected to each other. Each of the residue_links has a child atom_link that embodies a finer granularity. For example, the following code snippet

```xml
<residue_link from="6" to="5">
    <atom_link from="C1" to="O3" to_replaces="O1" bond_order="1" />
</residue_link>
```

specifies that there is a link from the residue with partid="6" to the residue with partid="5", and that this link is actually a covalent bond from “C1” of the residue with partid="6" to “O3” of the residue with partid="5". The strings “C1” and “O3” are partid attributes of bound_atom objects in the GLYDE-II representations of the archetype molecules specifying the structures of the “from” residue (partid="6") and the “to” residue (partid="5"), respectively. Furthermore, the attribute to_replaces="O1" specifies that the atom to which the bond extends (i.e., “O3” of the residue with partid="5") replaces “O1” of the residue from which the bond extends (i.e, the residue with partid="56"). This reflects the chemistry of glycosidic-bond formation, which transforms the monosaccharide molecule into a residue. As illustrated in the Figure below, bond formation is a dehydrating condensation that results in the liberation of a molecule of water. In the example above, the oxygen of this liberated water molecule is derived from “O1” of the residue with partid="6", and this oxygen is replaced by “O3” of the residue with partid="5" when the bond is made. (The two hydrogen atoms of the liberated water are not specified in the definition of the residues, as they are exchangeable hydrogens that are only transiently attached to oxygen atoms.)
One might imagine designing a carbohydrate residue archetype that does not contain “O1”, making it unnecessary to specify the replacement of this oxygen upon glycosidic bond formation. However, this approach would have several key disadvantages. (1) It presumes that all bond formations in which the residue participates involve the loss of O1, which may not be true. (2) Failure to include O1 in the definition of the carbohydrate residue makes it difficult, if not impossible, to specify the stereochemistry (anomeric configuration - α or β) of C1 using a formalism that specifies the parity of the anomeric carbon in the archetype. (3) Leaving out O1 in the definition of the carbohydrate residue forces one to add an oxygen atom (O1) in order to use this structure as an archetype to represent a reducing residue. In summary, it is critical to have the ability to specify that bond formation by chemical condensation results in the replacement of a specific atom(s) in the newly linked residue(s). This is also true when specifying links between amino acids in peptides, where bond formation results in the loss of one of the carboxylate oxygens of the amino-acid residue from which the bond extends. Finally, this approach is consistent with atom replacement formalism of Glyco-CT (Herget, Ranzinger et al. 2008)

Rule 8 requires that, when the glycosidic part of a glycoconjugate consists of a single residue (such as an α-d-Manp residue linked to a serine residue in a protein), that single residue must be “wrapped” in the (monoglycosyl) moiety that contains it. The molecule used as the archetype for this moiety must contain a single α-d-Manp residue. Directly linking the α-d-Manp residue to the peptide moiety would break **Rule 8**, making it difficult to implement code to parse the connection between objects. In other words, a three-level link is required in this case: (i) from the monosaccharide moiety to the peptide moiety; (ii) from the α-d-Manp residue to the serine residue; and (iii) from C1 (a bound atom) of the α-d-Manp residue to O3 (a bound atom) of the serine residue. The code on the next page illustrates such a structure and the combination of several structural entities into a single GLYDE-II file.
Technical description of GLYDE-II

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE GlydeII SYSTEM "http://glycomics.ccrcc.uga.edu/GLYDE-II/GLYDE-II-1.2.DTD">
<!ENTITY mDBget "http://www.monosaccharideDB.org/GLYDE-II.jsp?G">
<GlydeII>
<molecule subtype="glycan" id="glycan_1" name="monoglycosyl glycan">
 <residue subtype="base_type" partid="man_1" ref="&mDBget;a-dman-HEX-1:5"/>
</molecule>

<molecule subtype="peptide" id="peptide_1" name="dipeptide">
 <residue subtype="amino_acid" partid="ser_2" ref="&mDBget;lser"/>
 <residue subtype="amino_acid" partid="gly_1" ref="&mDBget;lgly"/>
 <residue_link from="gly_2" to="ser_1">
 <atom_link from="C1" to="N2" to_replaces="O1"/>
 </residue_link>
</molecule>

<molecule id="gp1" name="mannosylated peptide">
 <moiety subtype="glycan" partid="moiety_1" ref="#glycan_1"/>
 <moiety subtype="peptide" partid="moiety_2" ref="#peptide_1"/>
 <moiety_link from="moiety_1" to="moiety_2">
 <residue_link from="man_1" to="ser_2">
 <atom_link from="C1" to="O3" to_replaces="O1"/>
 </residue_link>
 </moiety_link>
</molecule>
</GlydeII>

Detail. The hierarchical structure of the *moiety_link* in the GLYDE-II representation of the mannopeptide, showing a covalent bond from ["C1" of "man_1" of "moiety_1"] to ["O3" of "ser_2" of "moiety_2"]. Within the *atom_link*, "to" is assigned as a synonym for "O3", such that *to_replaces="O1"* indicates that "O3" of "ser_2" replaces "O1" of "man_1". That is, the *to_replaces* attribute directly specifies the atom in the "from" residue that is replaced by the "to" atom, which is indirectly specified by the *to* attribute.

3.4. **Atypical structures.** GLYDE-II is capable of representing atypical structures, such as cyclic glycans and large glycans with repeating structures.

3.4.1. **Macrocyclic structures.** The connection-table format of GLYDE-II makes representation of fully defined cyclic structures trivial, as illustrated in the following example, where simply adding a *residue_link* from residue “1” to residue “6” cyclizes the molecule.
Technical description of GLYDE-II

3.4.2. Other cyclic structures. Another type of cyclic structure involves the connection of two residues by two distinct bonds, such as the 4,6-acetonide illustrated below.

![4,6-acetonide structure](image)
Technical description of GLYDE-II

Note that the residues in this molecule include one base-type and one substituent. The substituent is identified by reference to a molecule called “acetonide”. Since this is a residue of type “substituent” slightly different semantics are used in order to maintain consistency with the GlycoCT namespace. That is, GLYDE-II refers to fully defined molecules as archetypes of residues of subtype “substituent”, while GlycoCT refers to molecular fragments when specifying substituents. GLYDE-II requires an atomistic representation of the substituent, while GlycoCT does not. Therefore, the id of the archetypal substituent molecule is given a name that corresponds to a molecular fragment. In this case, the substituent residue has id=""acetonide”, which has a name corresponding to a molecular fragment but a structure corresponding to an acetone hydrate molecule (C₃H₆O + H₂O) = C₃H₈O₂. The link connecting the base-type residue to this substituent residue embodies two covalent bonds. In this case, “O4” and “O6” of the “b-D-Galp” residue replace “O2a” and “O2b” of the hydrated acetone residue, respectively.

Acetone hydrate is achiral: that is, “O2a” and “O2b” are stereochemically equivalent. However, this is not the case for all acetals of this general type. For example, pyruvate can be linked to a carbohydrate residue via a chiral ketal linkage, as illustrated next.

In this case, C2 of the pyruvate is chiral, but this is not the case for free pyruvate. It is necessary to define this substituent-type residue by reference to a pyruvate hydrate molecule, in which two different prochiral oxygen atoms, O2R and O2S, are attached to C2. The GLYDE-II representation of this molecule is shown next.
Technical description of GLYDE-II

Detail. Prochiral oxygens in the pyruvate molecule

Unless the two oxygens connected to C2 of the pyruvate are stereochemically distinguishable in the molecule containing this substituent residue, the pyruvate is achiral. However, in this case, the two oxygen atoms can be distinguished, as the atom_links in the above example specify that O4 of the β-D-Galp residue replaces one of the prochiral atoms (O2S) of the pyruvate and O6 of the β-D-Galp residue replaces the other prochiral atom (O2R) of the pyruvate, so the chirality of C2 of the pyruvate residue in the context of the molecule is fully specified. Thus, pyruvate substituents of this type can have two different stereochemical forms that are distinguished by the values assigned to the “to_replaces” attribute of the atom_link.

Extension of Rule 3 to systematically name oxygen atoms of the hydrated pyruvate archetype molecule, unambiguously defines the stereochemistry of this pyruvate ketal. The pro-R oxygen of free pyruvate is so named because replacement of the hydroxyl hydrogen on O2R would result in the R-configuration at C2. (See http://goldbook.iupac.org/P04889.html.) Thus, these two atoms can be distinguished.

3.4.3. Repeating structures. As illustrated in the next example (γ-cyclodextrin), a residue can constitute a repeat unit. More generally, a repeating block might contain substructures that are internally linked and the block itself can be linked to other structures. Within the repeat block, one must distinguish the “head-to-tail” link that connects the tandemly-arranged copies of the block to each other from any links that are internal to the block and from links to structures that are external to the block. The repeat_block element, which is designed to implement these requirements, contains repeat_part elements, each of which embodies a reference to a component of the repeat_block. These components are defined (once) outside of the repeat_block. The links between these components are also defined outside the repeat_block. However, as copies of the the repeat_block are tandemly arranged, the link between each of these tandem repeats must be specified. The head-to-tail link that connects tandem copies of the repeat_block is specified within the repeat_block. The links connecting the ends of the repeat_block to other components of the molecule are specified outside the repeat_block. The repeat_block has an attribute called repeat_number, which indicates how many times the repeat_block is tandemly repeated. This is illustrated in the code on the next page.
Technical description of GLYDE-II

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE GlydeII SYSTEM "http://glycomics.ccrc.uga.edu/GLYDE-II/GLYDE-II-1.2.DTD">
<!ENTITY mDBget "http://monosaccharidedb.org/GLYDE-II.jsp"[
<!--the link below specifies a link from a residue inside the repeat block TO a residue outside the repeat block-->
<residue_link from="residue_2" to="residue_1">
<atom_link from="C1" to="O4" to_replaces="O1" bond_order="1"/>
</residue_link>
<!--the next link specifies a link from a residue outside the repeat block TO a residue inside the repeat block-->
<residue_link from="3" to="2">
<atom_link from="C1" to="O4" to_replaces="O1" bond_order="1"/>
</residue_link>
<!--the next link specifies a structure that is completely outside the repeat block - this closes the macrocycle-->
<residue_link from="residue_1" to="residue_3">
<atom_link from="C1" to="O4" to_replaces="O1" bond_order="1"/>
</residue_link>
<repeat_block repeat_number_min="6" repeat_number_max="6">
<!--head-to-tail link for the end residues of the repeat block-->
<!--the head and tail residues are the same: residue_2-->
<residue_ref ref="Residue_2"/>
<atom_link from="C1" to="O4" to_replaces="O1" bond_order="1"/>
</residue_link>
</repeat_block>
</molecule>
</GlydeII>

A slightly more complex example is hyaluronan (http://www.chem.qmul.ac.uk/iupac/2carb/39.html#398), in which the repeating block structure is the disaccharide β-D-GlcpA-(1-3)$-\beta$-D-GlcpNAc. The disaccharides are linked together via β-(1-4) linkages from the β-D-GlcpNAc residue of one repeat unit to the β-D-GlcpA of the next. This is illustrated in the code shown on the next page.
The hyaluronan polysaccharide consists of tandemly repeated copies of a disaccharide repeat_unit, which is specified by listing its residue parts and the tandemly repeated residue_link that connects copies of the repeat_unit. The disaccharide repeat_unit contains three internal parts (residues 1, 2 and 3) and two internal residue_links. The link between adjacent tandemly repeated copies of the disaccharide is explicitly specified as a link from “C1” of the β-D-GlcNAc residue in one repeat unit to “O4” of the β-D-GlcA in the next. Thus, no relationship between the linkages internal to the repeat unit and linkages connecting the tandemly repeated units is assumed and the internal and tandem linkages are fully specified.

3.4.4. **Incomplete or statistically known structures.** An example of statistically known structural information is chondroitin sulfate, which is related to hyaluronan. Chondroitin sulfate is composed of partially sulfated β-D-GalNAc and β-D-GlcA residues (http://www.ncbi.nlm.nih.gov/books/NBK1900/).
CFG graphical representation of chondroitin sulfate

The sulfate groups are specified as residue objects (by reference to the H_2SO_4 archetype molecule, which corresponds to the “so$_4$” substituent in GlycoCT). The partial presence of sulfate substituents in the chondroitin sulfate repeat unit is specified using an attribute of the link element called stat, as illustrated in the code on the next page.
Technical description of GLYDE-II

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE GlydeII SYSTEM "http://glycomics.ccrc.uga.edu/GLYDE-II/GLYDE-II-1.2.DTD">
<!ENTITY mDBget "http://www.monosaccharidedb.org/GLYDE-II.jsp?G">
<GlydeII>
<molecule id="molecule_1" name="chondroitin sulfate">
<!-- The following parts make up the repeating disaccharide -->
<residue subtype="substituent" partid="1" ref="&mDBget;=n-acetyl"/>
<residue subtype="base_type" partid="2" ref="&mDBget;=b-dgal-hex-1:5"/>
<residue subtype="base_type" partid="3" ref="&mDBget;=b-dglc-hex-1:5,6:a" name="b-D-GlcpA"/>
<residue subtype="substituent" partid="4" ref="&mDBget;=sulfuric_acid" name="sulfate"/>
<residue subtype="substituent" partid="5" ref="&mDBget;=sulfuric_acid" name="sulfate"/>
<!-- The following parts make up the non-repeating core tetrasaccharide -->
<residue subtype="base_type" partid="6" ref="&mDBget;=b-dxyl-pen-1:5" name="b-D-Xylp"/>
<residue subtype="base_type" partid="7" ref="&mDBget;=b-dgal-hex-1:5" name="b-D-Galp"/>
<residue subtype="base_type" partid="8" ref="&mDBget;=b-dgal-hex-1:5" name="b-D-Galp"/>
<residue subtype="base_type" partid="9" ref="&mDBget;=b-dglc-hex-1:5,6:a" name="b-D-GlcpA"/>
<!-- connect the base-type and substituent of the GalNAc -->
<residue_link from="1" to="2">
<atom_link from="N1" to="C2" from_replaces="O2" bond_order="1"/>
</residue_link>
<!-- specify that, within the disaccharide, the GlcA is linked to the GalNAc -->
<residue_link from="3" to="2" stat="0.9">
<atom_link from="C1" to="O4" to_replaces="O1" bond_order="1"/>
</residue_link>
<!-- 90% of the time, GalNAc's base-type (part 2) has a sulfate (part 4) at O6 -->
<residue_link from="4" to="2" stat="0.9">
<atom_link from="S1" to="O6" to_replaces="O1" bond_order="1"/>
</residue_link>
<!-- 5% of the time, GalNAc's base-type (part 2) has a sulfate (part 5) at O4 -->
<residue_link from="5" to="2" stat="0.05">
<atom_link from="S1" to="O4" to_replaces="O1" bond_order="1"/>
</residue_link>
<!-- The following links connect the residues within the core tetrasaccharide -->
<residue_link from="7" to="6">
<atom_link from="C1" to="O4" to_replaces="O1" bond_order="1"/>
</residue_link>
<residue_link from="8" to="7">
<atom_link from="C1" to="O3" to_replaces="O1" bond_order="1"/>
</residue_link>
<residue_link from="9" to="8">
<atom_link from="C1" to="O3" to_replaces="O1" bond_order="1"/>
</residue_link>
<!-- The GalNAc in the disaccharide repeat is linked to GlcA in the core tetrasaccharide -->
<residue_link from="2" to="9">
<atom_link from="C1" to="O4" to_replaces="O1" bond_order="1"/>
</residue_link>
<!-- CONTINUED ON NEXT PAGE -->
</molecule>
</GlydeII>
Technical description of GLYDE-II

This code illustrates several different features of GLYDE-II. Note that two different sulfate residues ("residue_4" and "residue_5") are defined, and the stat attribute of their links to the GalNAc residue specify that the sulfate at O6 is present 90% of the time and the sulfate at O4 is present 5% of the time. (Specifying two different sulfate residues distinguishes this situation from the mutually exclusive case, wherein a single sulfate is present, but it may be in one of two different locations.) This formalism is closely related to that used by Glyco-CT (Herget, Ranzinger et al. 2008) for specifying statistically defined structures of this kind.

Chondroitin sulfate also has a “core tetrasaccharide composed of a β-D-GlcA, two β-D-Gal, and one β-D-Xyl residues. The tandemly repeating, partially sulfated disaccharide is linked to the β-D-GlcA of the core tetrasaccharide.

Sometimes a part is known to be attached to another specific part, but its attachment site is unknown. In this case, the link with coarser granularity is fully specified, but the child link (finer granularity) is specified as a choice. The syntax is similar to that used in Glyco-CT (Herget, Ranzinger et al. 2008) for this situation, using the vertical bar “|”, signifying “or”. This is illustrated in the code snippet listed below.

```
<residue_link from="residue_6" to="residue_4">
  <atom_link from="C1" to="O6|O2" to_replaces="O1" bond_order="1"/>
</residue_link>
```

This code specifies that the linkage site is partially known (i.e., O6 or O2, but not O3). In general, what is implicitly known should be specified. If it is known, for example, that the attachment is by an O-glycosidic linkage to an aldohexopyranose, then one should specify to="O2|O3|O4|O6" (i.e., it cannot be to O5 of the pyranose.) As in Glyco-CT, the “?” is not allowed for the values of the to and from attributes of a link.

There exists another type of uncertainty, where a residue or group of residues are known to be present, but their precise location is unknown. This type of uncertainty is indicated by the “PRO section” of Glyco-CT. The GLYDE-II formalism is similar but uses an element called combination. Consider, for example, a N-linked glycan that contains a single terminal β-D-GlcNAc residue, which may be attached at any one of the four following sites: (i) O6 of the α-D-Manp on the 6-arm, (ii) O2 of the α-D-Manp on the 6-
Technical description of GLYDE-II

linked arm, (iii) O4 of the α-D-Manp on the 3-linked arm, and (iv) O2 of the α-D-Manp on the 3-linked arm. Thus, both the residue-level site and the atomic-level site are unknown, but not completely unknown. That is, it is known that the β-D-GlcNAc residue (e.g., with partid="6") is attached to O6 or O2 of one α-D-Manp residue (e.g., with partid="4") or O4 or O2 of another α-D-Manp residue (e.g, with partid="5"). This uncertainty is represented by the following code snippet.

```
<combination>
  <residue_link from="6" to="4">
    <atom_link from="C1" to="O6|O2" to_replaces="O1" bond_order="1"/>
  </residue_link>
  <residue_link from="6" to="5">
    <atom_link from="C1" to="O4|O2" to_replaces="O1" bond_order="1"/>
  </residue_link>
</combination>
```

The *element* called *combination* is a collection of different links that represent all of the possible partially known attachment sites. In this example, the *combination* specifies the uncertainty of locating a single part (i.e., the β-D-GlcNAc residue with partid="6") that can be attached by any of the linkages enclosed in the tag. This *combination* must contain two different *residue_links*, as the *residue_link* to residue_4 is via O6 or O2, while the *residue_link* to residue_5 is via O4 or O2. Since this *combination* has only one *part*, only one of the possible linkage sites can be occupied. As with the “PRO section” of the Glyco-CT formalism, a combination can only be used to represent homogenic structures (where only one structure exists, but its precise structure is unknown). Mixtures should be represented by a collection of crisp representations.

Alternatively, two β-D-GlcNAc residues (one with partid="6" and one with partid="7") may be present at the same set of four possible sites described above, but their precise locations are not known. Obviously, they cannot both be present at the same location, and this is where the *combination element* is most useful. This is illustrated in the code snippet below.

```
<!-- this specifies the possible sites for residue 6 and residue 7 -->
<!-- Only 1 combination is true -->
<combination>
  <residue_link from="6" to="4">
    <atom_link from="C1" to="O6|O2" to_replaces="O1" bond_order="1"/>
  </residue_link>
  <residue_link from="6" to="5">
    <atom_link from="C1" to="O4|O2" to_replaces="O1" bond_order="1"/>
  </residue_link>
  <residue_link from="7" to="4">
    <atom_link from="C1" to="O6|O2" to_replaces="O1" bond_order="1"/>
  </residue_link>
  <residue_link from="7" to="5">
    <atom_link from="C1" to="O4|O2" to_replaces="O1" bond_order="1"/>
  </residue_link>
</combination>
```

This is the case that is most similar to the case used to describe the “PRO section” of Glyco-CT. A parsing algorithm could easily enumerate all of the possible combinations implicit in this representation, excluding those where the same site is occupied by two different structures.
This formalism would also be very useful in describing the structure of fragment ions observed in MS/MS spectra. For example, a fully methylated oligosaccharide ion is fragmented and it is known that a particular fragment ion contains an α-D-Manp residue that has a β-D-GlcNAc residue attached at O2, O3, O4, or O6 and methyl substituents (which are formally residues) attached to the oxygens that do not bear the β-D-GlcNAc residue. That is, the attachment site of the β-D-GlcNAc residue in the original structure of the parent ion is not known, but the attachment sites of the β-D-GlcNAc and methyl residues are mutually exclusive. Then, a combination whose parts are 3 methyl residues and the β-D-GlcNAc residue can be specified, and this combination would contain the possible (mutually exclusive) links to the α-D-Manp residue. The code would look like the following:

```xml
<combination parts="5|6|7|8">
  <!-- this specifies the possible sites for residues 5-8 -->
  <!-- only one combination is true -->
  <link from="5|6|7|8" to="4">
    <link from="O1" to="O2|O3|O4|O6" to_replaces="O1" bond_order="1"/>
  </link>
</combination>
```

In this case, the methyl groups are based on a methanol molecule and O1 of the methanol is replaced by O2 or O3 or O4 or O6 of the α-D-Manp residue when the links are instantiated. One disadvantage of this approach is that, for combinations that include chemically identical structures, several degenerate combinations of mutually exclusive links are possible. That is, the combination in which (methyl) residue 6 is at O2 and (methyl) residue 7 is at O3 is formally distinct from the converse combination in which (methyl) residue 6 is at O3 and (methyl) residue 7 is at O2, even though these two combinations actually have the same chemical structure. This degeneracy is also a characteristic for the above example with two different β-D-GlcNAc residues. It also appears to be a characteristic of Glyco-CT when ambiguity is represented using the “PRO section”.

One might imagine that collecting these links within a combination element is unnecessary. However, it is possible that a single molecule can have more than one set of structures with mutually exclusive attachment sites, and these sets must be logically separated by specifying more than one combination.

4. Molecular Geometry

A basic discussion of the GLYDE-II representation of molecular geometry is presented in the main text of the manuscript describing GLYDE-II, including both explicit (Cartesian) representations invoking the x, y and z attributes of the coords tag and abstract
representations invoking the *id* attribute of a GLYDE molecule. Often, the geometric information included in the *id* attribute of a molecule is sufficient to make valuable inferences about the molecular structure and its relationships to its biological and physical properties. However, explicit representations of molecular geometry can be used to define geometry at the atomic level when this is appropriate. That is, conventions are specified to facilitate the implementation of algorithms to interconvert GLYDE representations and fully atomistic representations. The coordinates of each atom in the global frame of reference can be inferred from parameters that translate and rotate the molecule from the local frame of reference to the global frame of reference. A global frame of reference is most easily defined by specifying an *aggregate* to hold a *molecule_instance* so that the molecule’s x-, y- and z-coordinates in the aggregate’s frame of reference can be assigned. For example, the local coordinates of each atom in an α-D-Manp molecule are defined in its GLYDE representation. A *molecule_instance* defined by reference to the α-D-Manp molecule can be placed at any Cartesian coordinates in a global frame of reference that is arbitrarily defined by the *aggregate*. However, in order to infer the global coordinates of all of the atoms in the α-D-Manp *molecule_instance*, its orientation must also be specified. This is accomplished by specifying a set of three Euler angles that rotate the *molecule_instance* in the global frame of reference.
Technical description of GLYDE-II

A

![Image of a molecule structure with labeled atoms and axes]

B

```
1  <GlydeII>
2    <molecule subtype="base_type" id="a-dman-hex-1:5" name="a-D-Manp">
3       <bound_atom partid="C1"
4          ref="http://glycomics.ccrc.uga.edu/GLYDE-II/lib/atoms.xml#C">
5          <coords x="0.000" y="0.000" z="0.000" />
6       </bound_atom>
7       <bound_atom partid="C2"
8          ref="http://glycomics.ccrc.uga.edu/GLYDE-II/lib/atoms.xml#C">
9          <coords x="-0.509" y="1.444" z="0.000" />
10      </bound_atom>
11      ...
12      <bound_atom partid="O5" ref="#O"
13         ref="http://glycomics.ccrc.uga.edu/GLYDE-II/lib/atoms.xml#O">
14         <coords x="1.428" y="0.000" z="0.000" />
15      </bound_atom>
16      ...
17      <atom_link from="C2" to="C1" bond_order="1" />
18      ...
19      <atom_link from="O5" to="C1" bond_order="1" />
20      ...
21  </molecule>
22 </GlydeII>
```

Detail. Stick model (A) and abbreviated GLYDE-II representation (B) of an α-D-Manp molecule. (Several lines of XML code are omitted for brevity; the remaining lines are numbered.) The structure of each `bound_atom` is specified by its `ref` attribute (lines 3, 6 and 33), which points to a GLYDE-II representation of the `atom` serving as the archetype for the `bound_atom`. The molecular topology is fully specified by `atom_link` objects (e.g., lines 60 and 69), which connect `bound_atom` objects. The molecular configuration
Technical description of GLYDE-II

(stereochemistry) is specified explicitly by listing the coordinates of each bound atom. Alternatively, stereochemistry of the molecule can be inferred from its id (line 2), which by rule corresponds to its representation using a format based on GlycoCT. The conventional orientation and position of the Cartesian axes in the atomistic GLYDE-II representation is defined by the alignment of three key bound atom objects: the anomeric carbon (C1 in this case) is at the origin, the ring oxygen (O5 in this case) is on the x-axis, and the highest-numbered carbon (C2 in this case) that is directly linked to the anomeric carbon is in the first or second quadrant of the x,y-plane (where y > 0).

Given the global coordinates of the atoms in a molecule (e.g., as a pdb file) and a method to identify the partonomic relationships in that molecule, it is a straightforward task to generate a GLYDE representation of the molecule in which each part is properly located and aligned within its local (aggregate, molecule, moiety, residue) frame of reference. This recursive process (starting with the coarsest granularity) involves a translation of each part to establish its local Cartesian origin followed by a rotation to properly orient it in its local Cartesian frame of reference. The conventional orientation of the bound atoms in a molecule is specified in the above Figure. The conventional orientation of the residues in a moiety is defined below. Once the translation parameters (Δx, Δy and Δz) and rotation matrix are calculated for this process, it is straightforward to calculate (at each level of granularity) the local coordinates (x, y and z) and Euler angles (α, β and γ) required to generate a parameterized GLYDE representation that can be used to reproduce the fully atomistic representation. In this context, it is important to note that, as defined in GLYDE, each bound_atom and free_atom is a so-called “structureless particle”, so its orientation in the molecule’s local frame of reference is undefined. Thus, bound_atom and free_atom_instance objects have no attributes corresponding to Euler rotation angles.

Translation of a GLYDE representation of a complex molecule into a fully atomistic representation is also a recursive process that, in this case, involves rotation of each part (as specified by the part’s Euler angles) followed by translation (as specified by the part’s Cartesian coordinates). For example, given an aggregate consisting of a single molecule_instance specified by reference to a molecule composed of bound_atoms, the aggregate (global) coordinates of each bound_atom in the aggregate are readily calculated. One starts with the local coordinates of each bound_atom in the molecule that was used as an archetype for the molecule_instance. The bound_atoms are rotated about the local origin using the Euler angle attributes (alpha, beta and gamma) of the molecule_instance, and then translated such that that the atom at the local origin (e.g., the anomeric carbon of the archetype molecule) is translated in the global frame to the coordinates specified by the x, y, and z attributes of the molecule_instance. The identical algorithm can be used, given the local coordinates of each bound_atom in a residue of an enclosing moiety, and the coordinates and Euler angles of the residue in the moiety, to calculate the coordinates of each of the residue’s atoms in the moiety frame of reference. With that information, along with the coordinates and Euler angles of the moiety in the context of the molecule, the same algorithm can be used to calculate the coordinates of the atoms in the frame of reference of the molecule. The algorithm can be applied again
if the molecule (containing the moiety) is used as an archetype for an oriented molecule_instance in an aggregate, as described at the top of this paragraph. This recursive procedure is a good example of how the hierarchical self-consistency of structural representations in GLYDE allows structural information to be processed at different levels of granularity using the same algorithm.

Conventions for Rotation. The expressions shown here are consistent with those presented by Arfken (Arfken, Weber et al. 2012) and with Weisstein at Wolfram Research (http://mathworld.wolfram.com/EulerAngles.html. (See also http://mathworld.wolfram.com/RotationMatrix.html). Weisstein also gives a recipe for determining the Euler angles for transforming an object in one coordinate system to another coordinate system (by rotation) given coordinates of several points in the object in both systems.

Rotation of axes by an angle ϕ:

$$
R_x(\phi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{pmatrix},
R_y(\phi) = \begin{pmatrix} 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \\ \sin \phi & 0 & \cos \phi \end{pmatrix},
R_z(\phi) = \begin{pmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

A positive value of ϕ corresponds to a counterclockwise rotation of the axes when viewed from the direction of the (positive) axis of rotation. This is referred to a right-hand “alias” convention, as vectors are stationary but given different names when the axes are rotated. Rotation of the vectors themselves is called “alibi” rotation, as the vectors themselves move (they are somewhere else.)

For rotation to obtain an arbitrary orientation, three Euler angles α, β, and γ, can be defined. In the following, c_1 corresponds to $\cos(\alpha)$, s_2 corresponds to $\sin(\beta)$, etc.

The order in which the rotations are applied is opposite the order they are written. Thus, for the zxz (alias) convention (Arfken, Weber et al. 2012), the following hold true:

$$
R_z(\alpha) = \begin{pmatrix} c_1 & s_1 & 0 \\ -s_1 & c_1 & 0 \\ 0 & 0 & 1 \end{pmatrix},
R_y(\beta) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_2 & s_2 \\ 0 & -s_2 & c_2 \end{pmatrix},
R_z(\gamma) = \begin{pmatrix} c_3 & s_3 & 0 \\ -s_3 & c_3 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

$$
R = R_z(\gamma)R_y(\beta)R_z(\alpha) = \begin{pmatrix} c_3 & s_3 & 0 \\ -s_3 & c_3 & 0 \\ 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 & 0 \\ 0 & c_2 & s_2 \\ 0 & -s_2 & c_2 \end{pmatrix}\begin{pmatrix} c_1 & s_1 & 0 \\ -s_1 & c_1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

26
Technical description of GLYDE-II

\[
R = \begin{pmatrix}
 c_3 & s_3 & 0 \\
 -s_3 & c_1 & 0 \\
 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
 c_1 & s_1 & 0 \\
 -s_1 c_3 & c_1 & s_2 \\
 s_1 s_3 & -c_1 & c_2
\end{pmatrix}
= \begin{pmatrix}
 c_1 c_3 - s_1 c_2 s_3 & s_1 c_3 + c_1 c_2 s_3 & s_2 s_3 \\
 -s_1 s_3 - s_1 c_2 c_3 & -s_1 s_3 + c_1 c_2 c_3 & -c_2 c_3 \\
 s_1 s_2 & -c_1 s_2 & c_2
\end{pmatrix}
\]

Right-multiplication of the (alias) matrix \(R = R_2(\gamma)R_1(\beta)R_2(\alpha) \) by the column vector gives the transformed coordinates obtained by rotating the axes. For example, for the point \((1,1,0)\) [expressed as a column vector] using \(\alpha = \pi/2, \beta = \pi/2\) and \(\gamma = 0\), and the zxz alias convention,

\[
R = R_2(\gamma)R_1(\beta)R_2(\alpha) = \begin{pmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 1 & 0 & 0
\end{pmatrix}
\]

Right-multiplying this by the coordinate vector gives

\[
Rv = \begin{pmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 1 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
 1 \\
 1 \\
 1
\end{pmatrix}
= \begin{pmatrix}
 1 \\
 0 \\
 1
\end{pmatrix}
\]

This agrees with the manually generated results for the new coordinates when performing the rotation of the axes using these Euler angles, as shown below.

Rotating vectors is the same as rotating axes, **but in the opposite direction**. That is, when the alias convention is used, a positive value of \(\phi\) corresponds to a clockwise rotation of the vector when viewed from the direction of the (positive) axis of rotation.

For example, for the same point \((1,1,0)\) [expressed as a column vector] using the same angles \(\alpha = \pi/2, \beta = \pi/2\) and \(\gamma = 0\), and the zxz alias convention, the same rotation matrix is obtained.
Technical description of GLYDE-II

\[R = R_\gamma(\gamma)R_\beta(\beta)R_\alpha(\alpha) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \]

Right-multiplying this by the coordinate vector gives the same answer as before:

\[R_v = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \]

This agrees with the manually derived answer for the new coordinates when performing the rotation of the vector using these Euler angles, as shown below.

In conclusion, for rotation of axes or vectors using the alias convention, the same Euler rotation matrix is right-multiplied by the column vector describing the coordinates of the point. According to the original rotation matrix definitions above [i.e., \(R_x(\phi) \), \(R_y(\phi) \), and \(R_z(\phi) \)], a positive angle \(\phi \) corresponds to counterclockwise rotation of an axis and to the clockwise rotation of a vector, looking toward the origin from the (positive) rotation axis.

Alternatively, one could redefine the rotation matrices for vectors, as done by Weisstein. (see http://mathworld.wolfram.com/RotationMatrix.html.) In this case, the rotation is said to be an “alibi” (the vector is somewhere else), and the rotation matrix for a vector about a particular axis would be the transpose of the alias rotation matrix about that axis. (This can be derived from the fact that rotation matrices are orthogonal.) The relevant rotation matrices are given below.

(Alibi) rotation of vectors by an angle \(\phi \):

\[R_x(\phi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{pmatrix} \quad R_y(\phi) = \begin{pmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{pmatrix} \quad R_z(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \]
Technical description of GLYDE-II

For alibi rotations, a positive angle corresponds to a counterclockwise rotation of the vector when looking toward the origin from the positive rotation axis.

For the zxz convention using the alibi rotation definitions, the following hold true

\[
\begin{align*}
R_z(\alpha) &= \begin{pmatrix} c_1 & -s_1 & 0 \\ s_1 & c_1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \\
R_x(\beta) &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_2 & -s_2 \\ 0 & s_2 & c_2 \end{pmatrix}, \\
R_z(\gamma) &= \begin{pmatrix} c_3 & -s_3 & 0 \\ s_3 & c_3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
\end{align*}
\]

\[
R = R_z(\gamma)R_x(\beta)R_z(\alpha) = \begin{pmatrix} c_3 & -s_3 & 0 \\ s_3 & c_3 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 & -s_1 & 0 \\ s_1 & c_1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} c_1c_3 - s_1c_2s_3 & -s_1c_3 - c_1c_2s_3 & s_2s_3 \\ s_1s_3 + c_1c_2c_3 & -s_1s_3 + c_1c_2c_3 & -s_2c_3 \\ s_1s_2 & c_1s_2 & c_2 \end{pmatrix}
\]

Such alibi rotations are more appropriate for rotation of real objects like molecules and their parts.

For example, for the same point (1,1,0) [expressed as a column vector] using the same angles \(\alpha = \pi/2, \beta = \pi/2 \) and \(\gamma = 0 \), and the zxz (alibi) convention, the following rotation matrix is obtained.

\[
R = R_z(\gamma)R_x(\beta)R_z(\alpha) = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix}
\]

Right-multiplying this alibi rotation matrix by the coordinate vector gives the following result:

\[
Rv = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
\]
Technical description of GLYDE-II

This agrees with the manually derived result for the new coordinates when performing the alibi rotation of the vector using these Euler angles, as shown below.

Conclusion: The zxz alibi convention corresponds to the counterclockwise rotation of vectors when looking toward the origin from the positive rotation axis. This corresponds to a clockwise rotation when viewed from the origin, looking toward the positive rotation axis. This is the most natural convention, as it is similar to the physical convention (http://hyperphysics.phy-astr.gsu.edu/hbase/rotv.html) for defining angular velocity. The zxz alibi convention was thus selected as the convention for rotation of objects in GLYDE.

Literature Cited